Note

A facile synthesis of 4-O-allyl-D-xylopyranose and its use in the preparation of xylo-oligosaccharides

Kenichi Takeo*, Yoshihiro Murata, and Shinichi Kitamura Department of Agricultural Chemistry, Kyoto Prefectural University, Shimogamo, Kyoto 606 (Japan) (Received April 2nd 1991; accepted in revised form July 15th, 1991)

4-O-Allyl-2,3-di-O-benzoyl- α -D-xylopyranosyl bromide (8), the D-xylopyranosyl donor for synthesis of L-serine-linked carbohydrate units in the glycopeptide linkage region of several mammalian proteoglycans, was prepared from D-arabinose in ten steps^{1,2}. The most laborious step involved in the sequence^{1,2} for practical preparation of 4-O-allyl-D-xylopyranose (5, precursor to 8) appears to be the opening of the anhydro ring in benzyl 2,3-anhydro- β -D-ribopyranoside by extended treatment with concentrated alkali at high temperature.

Here we report an alternative, facile synthesis of 5, along with 8, starting from the commercially available methyl β -D-xylopyranoside (1). Also described is the preparation of xylobiose (18), xylotetraose (20), and the xylohexaose derivative 22 suitable for complete synthesis of carbohydrate chains of trehalose-containing lipooligosaccharide antigens from $Mycobacterium\ kansasii\ ^3$, using 8 as the key intermediate.

Acetonation of 1 with 2-methoxypropene in N,N-dimethylformamide in the presence of a catalytic amount of methanolic hydrogen chloride, by a slight modification^{4,5} of the original procedure⁶, gave a mixture which, without isolation of the 2,3-O-isopropylidene derivative⁵ 2, was alkylated with allyl bromide-sodium hydride in N,N-dimethylformamide⁷, and then treated with dilute acid in acetone. Fractional crystallization of the product provided 47% of pure methyl 4-O-allyl- β -D-xylopyranoside⁸ (3). Acid hydrolysis of 3, followed by acetylation with acetic anhydride-sodium acetate⁹, gave 1,2,3-tri-O-acetyl-4-O-allyl-D-xylopyranose (4, 80%), which was O-deacetylated to afford crystalline 5 (94%). The overall yield of 5, based on 1, was 35%. Benzoylation of 5 gave 4-O-allyl-1,2,3-tri-O-benzoyl-D-xylopyranose (6, 93%), which was a mixture of the α and β anomer 7 in the ratio 1:2.4 (13 C-n.m.r.). Fractional crystallization of 6 afforded 54% of 7, the m.p. (89°) of which differed significantly from that reported¹ (98°). The benzoate 6 was converted into 8 (94%) by treatment with hydrogen bromide in acetic acid.

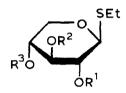
Acetonation of ethyl 1-thio- β -D-xylopyranoside¹⁰ (9) with 2-methoxypropene, as

^{*} To whom correspondence should be addressed

$$1 R^1 = R^2 = R^3 = H$$

2
$$R^1$$
, $R^2 = Me_3C$; $R^3 = H$

$$R^1 = R^2 = H, R^3 = A11$$


4
$$R^1 = OAc, R^2 = R^3 = Ac$$

5
$$R^1 = OH, R^2 = R^3 = H$$

6
$$R^1 = OBz, R^2 = R^3 = Bz$$

7
$$R^1 = OBz (\beta), R^2 = R^3 = Bz$$

8
$$R^1 = Br(\alpha), R^2 = R^3 = Bz$$

$$R^1 = R^2 = R^3 = H$$

10
$$R^1$$
, $R^2 = Me_2C$; $R^3 = H$

11
$$R^1 = H$$
; R^2 , $R^3 = Me_2C$

12
$$R^1$$
, $R^2 = Me_2C$; $R^3 = Ac$

13
$$R^1$$
, $R^2 = Me_2C$; $R^3 = Bz$

14
$$R^1$$
, $R^2 = Me_2C$; $R^3 = Bz1$

15
$$R^1 = R^2 = H$$
, $R^3 = Bz1$

16
$$R^1 = R^2 = Bz, R^3 = Bz1$$

for 1, gave the 2,3- (10) and 3,4-O-isopropylidene derivative 11 in 70 and 18% yields, respectively. Acetylation of 10 gave the 4-O-acetyl-2,3-O-isopropylidene derivative 12, the ¹H-n.m.r. spectrum of which showed an octet for H-4 at δ 5.04, confirming^{4,5} the position of the acetal group in 10.

Condensation of 10 with 8 in toluene-dichloromethane in the presence of silver triflate and 1,1,3,3-tetramethylurea¹¹ afforded, after column chromatography, ethyl O-(4-O-allyl-2,3-di-O-benzoyl- β -D-xylopyranosyl)-(1 \rightarrow 4)-2,3-O-isopropylidene-1-thio- β -D-xylopyranoside (13, 80%). The latter was transformed into ethyl O-(4-O-allyl-2,3-di-O-benzyl- β -D-xylopyranosyl)-(1 \rightarrow 4)-2,3-di-O-benzoyl-1-thio- β -D-xylopyranoside (16) by a sequence involving O-debenzoylation and subsequent benzylation (\rightarrow 14), de-O-isopropylidenation (\rightarrow 15), and benzoylation. Glycosylation of 16 with 2-(trimethylsilyl)ethanol in toluene in the presence of methyl triflate and molecular sieve¹² gave 2-(trimethylsilyl)ethyl O-(4-O-allyl-2,3-di-O-benzyl- β -D-xylopyranosyl)-(1 \rightarrow 4)-2,3-di-O-benzoyl- β -D-xylopyranoside (17, 92%). Isomerization of the allyl group in 17 to the propenyl ether with the Wilkinson catalyst¹³ in the presence of 1,4-

17
$$n = 0$$
, $R = A11$

20 n = 1, R = H

18 n = 0, R = H

21 n = 2, R = A11

19 n = 1, R = A11

22 n = 2, R = H

 $SE : Me_3Si(CH_2)_2$

diazabicyclo[2.2.2]octane, followed by hydrolysis with dilute acid in aqueous acetone¹⁴, gave 18 having 4²-OH unsubstituted. Coupling of 18 with 16, promoted by methyl triflate as before, yielded the tetrasaccharide derivative 19 (84%), O-deallylation of which gave 20 having 4⁴-OH unsubstituted. Methyl triflate-promoted glycosylation of 20 with 16 gave the hexasaccharide derivative 21 (83%), which was O-deallylated to furnish 22 having 4⁶-OH unsubstituted.

EXPERIMENTAL

General methods. — Unless stated otherwise, these were as described⁴. N.m.r. spectra (1 H, 90 MHz; 13 C, 22.6 MHz) for solutions in CDCl₃ (internal Me₄Si) or D₂O (internal sodium 4,4-dimethyl-4-silapentanoate- d_4) were recorded with a Hitachi R-90H spectrometer.

Methyl 4-O-allyl-β-D-xylopyranoside (3). — 2-Methoxypropene (67.1 mL, 0.7 mol) was added dropwise during 15 min at 5° to a stirred suspension of 1 (50 g, 0.3 mol) in dry N,N-dimethylformamide (150 mL) containing 5 m HCl in MeOH (0.1 mL). After ~ 5 min, the mixture became clear and the solution was stirred for 1 h at room temperature. T.l.c. (1:1 hexane-EtOAc) then showed the disappearance of 1 and the presence of one major (R_p 0.41) and one minor (R_p 0.68) component. The mixture was diluted with CHCl₃ (500 mL) and washed with water (500 mL). The aqueous layer was extracted 3 times with CHCl₃ (150 mL). The combined CHCl₃ solution was made slightly acidic by addition of 5 m HCl in MeOH (0.01 mL). After ~ 10 min, t.l.c. (1:1 hexane-EtOAc) showed conversion of the minor product (R_p 0.68) into the major component (R_p 0.41). The solution was washed successively with aq. NaHCO₃, and water, dried, and the solvent evaporated off. The last traces of solvents were removed by repeated evaporation of PhMe. To a stirred solution of the residue in N,N-

dimethylformamide (350 mL) was added portionwise at 0° NaH (16.5 g; 60% in mineral oil) and the mixture was stirred for 30 min at 0°. Allyl bromide (32 mL) was added dropwise and the mixture was stirred for 2 h at room temperature, whereupon t.l.c. (4:1 benzene–EtOAc) showed complete conversion of the isopropylidene derivative (R_F 0.18) into the product (R_F 0.77). The excess of alkylating reagent was decomposed by addition of MeOH, most of the solvents were evaporated, and a solution of the residue in CHCl₃ was washed with water, dried, and the solvent evaporated off. To a solution of the residue in Me₂CO (250 mL) was added M HCl (2 mL). The mixture was boiled under reflux for 10 min, made neutral with solid NaHCO₃, filtered through a Celite pad, and the solvent was evaporated off. The residue was dissolved in 2-propanol (250 mL) at 50°, and then hexane was added until a faint turbidity persisted. The crystals formed on cooling to room temperature were filtered off and recrystallized from the same solvent to give 3 (29.2 g, 47%), m.p. 107–108°, $[\alpha]_D^{20}$ – 95° (c 1.1, CHCl₃); lit. 8 m.p. 106.5–107°, $[\alpha]_D^{-}$ 96°; R_F 0.39 (t.l.c. in 9:1 benzene–EtOH). The ¹³C-n.m.r. spectrum was identical to that reported⁸.

4-O-Allyl-D-xylopyranose (5). — A mixture of 3 (26.5 g) and M HCl (400 mL) was stirred for 3 h at 90°, at which time t.l.c. (9:1 CHCl₃-MeOH) showed complete conversion of 3 (R_F 0.8) into 5 (R_F 0.28). The mixture was cooled, the pH was adjusted to 6.0 by addition of solid Li₂CO₃, and the mixture was concentrated to dryness by evaporation of PhMe. The residue was treated with Ac₂O (100 mL) and NaOAc (15 g) under reflux for 30 min. Conventional isolation followed by column chromatography (10:1 benzene-EtOAc) of the crude product, gave amorphous 1,2,3-tri-O-acetyl-4-O-allyl-D-xylopyranose (4, 32.8 g, 80%), R_F 0.5 (t.l.c. in 4:1 benzene-EtOAc); ¹³C-n.m.r. (CDCl₃): δ 92.3 (C-1 β) and 89.4 (C-1 α) in the ratio 1.6:1.

Anal. Calc. for C₁₄H₂₀O₈: C, 53.16; H, 6.37. Found: C, 53.24; H, 6.43.

A solution of 4 (30.4 g) in anhydrous MeOH (200 mL) containing methanolic M NaOMe (2 mL) was kept for 1 h at room temperature, made neutral with Amberlite IR-120 (H⁺) resin, filtered, and the solvent evaporated off. Crystallization from EtOAc–Et₂O gave 5 (17.2 g, 94%), m.p. 97–98°, $[\alpha]_{\rm D}^{23}$ – 22° (2 min) \rightarrow + 7° (24 h, constant; c 1.3, H₂O); ¹³C-n.m.r. (D₂O): δ 136.5 and 121.0 (CH = CH₂), 99.0 (C-1 β), 94.5 (C-1 α), 65.8 (C-5 β), and 61.6 (C-5 α).

Anal. Calc. for C₈H₁₄O₅: C, 50.52; H, 7.42. Found: C, 50.56; H, 7.34.

4-O-Allyl-1,2,3-tri-O-benzoyl-β-D-xylopyranose (7). — A solution of 5 (12.0 g) in pyridine (80 mL) was treated at 0° with BzCl (29 mL), and the mixture was kept overnight at room temperature. Conventional processing and chromatography (4:1 hexane-EtOAc) gave amorphous 4-O-allyl-1,2,3-tri-O-benzoyl-D-xylopyranose (6) (29.5 g, 93%), R_F 0.71 (t.l.c. in 10:1 benzene-EtOAc); ¹³C-n.m.r. (CDCl₃): δ 92.8 (C-1 β) and 90.2 (C-1 α) in the ratio 2.4:1.

Anal. Calc. for C₂₀H₂₆O₈: C, 69.31; H, 5.22. Found: C, 69.43; H, 5.31.

Crystallization of 6 (14.4 g) from MeOH afforded 7 (7.8 g, 54%), m.p. 89–91°, $[\alpha]_{\rm b}^{23}$ + 32.5° (c 1.1, CHCl₃); lit. 1 m.p. 98–100°, $[\alpha]_{\rm b}^{32}$ + 32°; 13 C-n.m.r. (CDCl₃): δ 165.2, 165.1, and 164.5 (C=O), 133.1 and 117.6 (CH=CH₃), 92.8 (C-1), and 63.5 (C-5).

Anal. Found: C, 69.34; H, 5.27.

Ethyl 2,3- (10) and 3,4-O-isopropylidene-1-thio- β -D-xylopyranoside (11). — A solution of 9 (7.25 g, 37.3 mmol) in N,N-dimethylformamide (20 mL) was treated with 5M HCl in MeOH (0.02 mL) and 2-methoxypropene (8.2 mL, 85.6 mmol) as described for 1. Column chromatography (9:1 benzene-EtOAc containing 0.1% Et₃N) of the product afforded 10 (6.13 g, 70%) and 11 (1.58 g, 18%).

Compound 10 had m.p. 95.5–96.5° (from Et₂O-petroleum ether), $[\alpha]_{\rm D}^{23}$ – 64° (c 1.8, CHCl₃); $R_{\rm P}$ 0.25 (t.l.c. in 4:1 benzene–EtOAc); n.m.r. (CDCl₃): 1 H, δ 4.61 (d, 1 H, $J_{1,2}$ 9.0 Hz, H-1), 2.60 (m, 2 H, SCH₂CH₃), 1.48 (s, 6 H, CMe₂), and 1.32 (t, 3 H, SCH₂CH₃); 13 C, δ 111.0 (CMe₂), 83.3 (C-1), 83.0, 75.7, 69.8 (C-2,3,4), 68.8 (C-5), 26.7 and 26.5 (CMe₂), 24.4 (SCH₂CH₃), and 15.1 (SCH₂CH₃).

Anal. Calc. for C₁₀H₁₈O₄S: C, 51.26; H, 7.74. Found: C, 51.22; H, 7.80.

Compound 11 had m.p. 92–93° (from Et₂O–petroleum ether), $[\alpha]_{\rm p}^{23}$ – 83° (c 1.4, CHCl₃); $R_{\rm p}$ 0.35 (t.l.c. in 4:1 benzene–EtOAc); n.m.r. (CDCl₃): 1 H, δ 4.25 (d, 1 H, $J_{1,2}$ 8.1 Hz, H-1), 2.74 (m, 2 H, SCH₂CH₃), 1.47 (s, 6 H, CMe₂), and 1.32 (t, 3 H, SCH₂CH₃); 13 C, δ 111.6 (CMe₂), 87.3 (C-1), 82.5, 73.3, and 71.9 (C-2,3,4), 68.3 (C-5), 26.7 and 26.55 (CMe₂), 24.9 (SCH₂CH₃), and 15.2 (SCH₂CH₃).

Anal. Calc. for $C_{10}H_{18}O_4S$: C, 51.26; H, 7.74. Found: C, 51.32; H, 7.77.

Ethyl 4-O-acetyl-2,3-O-isopropylidene-1-thio-β-D-xylopyranoside (12). — Acetylation of 10 (0.17 g) with 1:1 Ac₂O-pyridine (3 mL) gave amorphous 12 (0.19 g, 95%), $[\alpha]_D^{23}$ – 93° (c 1.2, CHCl₃); R_F 0.54 (t.l.c. in 2:1 hexane–EtOAc); n.m.r. (CDCl₃): 1 H, δ 5.04 (o, 1 H, $J_{4,5e}$ 5.3 Hz, $J_{4,5a}$ 8.1 Hz, H-4), 4.70 (d, 1 H, $J_{1,2}$ 9.0 Hz, H-1), 4.24 (m, 1 H, H-5e), 3.74 (t, 1 H, $J_{3,4}$ 9.2 Hz, H-3), 3.40 (t, 1 H, $J_{2,3}$ 9.1 Hz, H-2), 3.23 (m, 1 H, H-5a), 2.75 (m, 2 H, SC H_2 CH₃), 2.09 (s, 3 H, OAc), 1.48 (s, 6 H, C Me_2), and 1.31 (t, 3 H, SC H_2 C H_3); 13 C, δ 169.0 (C = 0), 111.5 (CMe₂), 83.3 (C-1), 79.3, 76.0, and 70.6 (C-2,3,4), 66.6 (C-5), 26.7 and 26.55 (CMe₂), 24.2 (SC H_2 CH₃), 20.8 (COCH₃), and 15.1 (SC H_2 CH₃).

Anal. Calc. for C₁₂H₂₀O₅S: C, 52.16; H, 7.29. Found: C, 52.25; H, 7.37.

Ethyl O-(4-O-allyl-2,3-di-O-benzoyl-β-D-xylopyranosyl)- $(1\rightarrow4)$ -2,3-O-isopropylidene-1-thio-β-D-xylopyranoside (13). — To a solution of 6 (8.04 g) in CH₂Cl₂ (30 mL) at 0° was added a saturated (at 0°) solution of HBr in AcOH (20 mL). The mixture was stirred for 20 min at 0° and then diluted with CH₂Cl₂. The solution was washed successively with iced water, aq. NaHCO₃, and water, dried, and concentrated, to give amorphous 4-O-allyl-2,3-di-O-benzoyl-α-D-xylopyranosyl bromide (8) (6.94 g, 94%), $[\alpha]_D^{22}$ + 167° (c 1.0, CH₂Cl₂), which was used in the glycosylation step without purification; n.m.r. (CDCl₃): ¹H, δ 6.75 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1); ¹³C, δ 133.05 and 117.75 (CH = CH₂), 88.2 (C-1), and 64.2 (C-5).

A solution of **8** (6.68 g, 14.5 mmol) in CH₂Cl₂ (50 mL) was added dropwise at -20° to a stirred solution of **10** (2.61 g, 11.1 mmol) in PhMe (20 mL) and CH₂Cl₂ (50 mL) containing silver triflate (4.09 g, 15.9 mmol) and 1,1,3,3-tetramethylurea (3.81 mL, 31.8 mmol). The mixture was allowed to attain room temperature, and then stirred for 2 h. Insoluble material was collected on a Celite layer, washed with CH₂Cl₂, and the combined filtrate and washings were washed successively with cold water, aq. NaHCO₃, and water, dried, and concentrated. Column chromatography (30:1 \rightarrow 20:1 benzene–EtOAc, stepwise) of the product gave **13** (5.48 g, 80%), $[\alpha]_{c}^{12} + 16^{\circ}$ (c 1.1,

CHCl₃); $R_{\rm F}$ 0.38 (t.l.c. in 10:1 benzene–EtOAc); ¹³C-n.m.r. (CDCl₃): δ 165.3 and 164.95 (C = O), 133.0 and 117.5 (CH = CH₂), 111.0 (CMe₂), 99.1 (C-1²), 83.2 (C-1¹), 67.5 (C-5¹), 63.0 (C-5²), 26.8 and 26.5 (CMe₂), 24.2 (SCH₂CH₃), and 15.1 (SCH₂CH₃).

Anal. Calc. for C₃₂H₃₈O₁₀S: C, 62.53; H, 6.23. Found: C, 62.68; H, 6.16.

Ethyl O-(4-O-allyl-2,3-di-O-benzyl-β-D-xylopyranosyl)-($1\rightarrow 4$)-2,3-O-isopropylidene-1-thio-β-D-xylopyranoside (14). — To a solution of 13 (8.47 g) in MeOH (70 mL) was added methanolic M NaOMe (0.5 mL) and the mixture was processed as described for the preparation of 5. A solution of the residue in N,N-dimethylformamide (30 mL) was treated with NaH (1.54 g; 60% in mineral oil) and PhCH₂Br (4.2 mL). Processing of the mixture as described for the preparation of 3, followed by column chromatography (20:1 benzene–EtOAc) of the product, gave 14 (7.27 g, 90%), m.p. 89–90° (from EtOH), [α]_D²³ + 27° (c 1.6, CHCl₃); R_F 0.46 (t.1.c. in 10:1 benzene–EtOAc); ¹³C-n.m.r. (CDCl₃): δ 138.5 and 138.3 (aromatic C-1), 134.55 and 117.1 (CH = CH₂), 111.1 (CMe_2), 102.2 (C-1²), 83.3 (C-1¹), 67.5 (C-5¹), 63.9 (C-5²), 26.8 and 26.5 (CMe_2), 24.2 (SCH_2CH_3), and 15.1 (SCH_2CH_3).

Anal. Calc. for C₃₂H₄₂O₈S: C, 65.51; H, 7.22. Found: C, 65.44; H, 7.32.

Ethyl O-(4-O-allyl-2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)-1-thio-β-D-xylopyranoside (15). — To a solution of 14 (6.88 g) in Me₂CO (70 mL) was added M HCl (1 mL). The mixture was stirred for 1 h at room temperature, made neutral with solid NaHCO₃, filtered through a Celite layer, and the filtrate was concentrated. A solution of the residue in CH₂Cl₂ was washed with water, dried, and concentrated. Crystallization of the residue from Et₂O-petroleum ether gave 15 (5.83 g, 91%), m.p. 88-89°, [α]₀²³ - 26° (c 1.05, CHCl₃); R_F 0.28 (t.l.c. in 2:1 hexane-EtOAc); ¹³C-n.m.r. (CDCl₃): δ 138.4 and 138.0 (aromatic C-1), 134.4 and 117.3 (CH = CH₂), 104.1 (C-1²), 83.5 (C-1¹), 67.2 (C-5¹), 64.0 (C-5²), 24.3 (SCH₂CH₃), and 15.2 (SCH₂CH₃).

Anal. Calc. for C₂₉H₃₈O₈S: C, 63.72; H, 7.01. Found: C, 63.65; H, 7.12.

Ethyl O-(4-O-allyl-2,3-di-O-benzyl-β-D-xylopyranosyl)-(1 → 4)-2,3-di-O-benzyl-1-thio-β-D-xylopyranoside (16). — Benzoylation of 15 (5.51 g), as described for 5, afforded 16 (6.98 g, 92%), m.p. 76–77° (from Et₂O-petroleum ether), $[\alpha]_{\rm b}^{23}$ + 3° (c 1.2, CHCl₃); $R_{\rm F}$ 0.57 (t.l.c. in 10:1 benzene–EtOAc); ¹³C-n.m.r. (CDCl₃): δ 165.3 and 165.1 (C = O), 138.5 and 138.3 (aromatic C-1), 134.5 and 116.95 (CH = CH₂), 103.6 (C-1²), 65.85 (C-5¹), 63.5 (C-5²), 24.5 (SCH₂CH₃), and 14.8 (SCH₂CH₃).

Anal. Calc. for $C_{43}H_{46}O_{10}S$: C, 68.42; H, 6.14. Found: C, 68.53; H, 6.11.

2-(Trimethylsilyl)ethyl O-(4-O-allyl-2,3-di-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3-di-O-benzoyl-β-D-xylopyranoside (17). — A mixture of 16 (2.02 g, 2.7 mmol), 2-(trimethylsilyl)ethyl alcohol (0.77 mL, 5.4 mmol), and powdered 4A molecular sieve (10 g) in PhMe (27 mL) was stirred under argon for 30 min at room temperature. Methyl triflate (1.51 mL, 13.3 mmol) was injected through a rubber septum and the mixture was stirred for 2 h at 40°. Triethylamine (3.7 mL) was added and the mixture was filtered through a Celite layer, which was washed with PhMe. The combined filtrate and washings were concentrated and the residue was subjected to column chromatography (30:1 benzene–EtOAc), to give 17 (2.0 g, 92%), $[\alpha]_{D}^{23}$ + 5° (c 1.3, CHCl₃); R_F 0.54 (t.l.c. in 15:1 benzene–EtOAc); ¹³C-n.m.r. (CDCl₃): δ 165.3 and

165.0 (C = O), 138.5 and 138.3 (aromatic C-1), 134.5 and 116.9 (CH = CH₂), 103.6 (C- 12), 100.3 (C- 11), 66.95 (CH₂CH₂SiMe₃), 63.5 and 62.9 (C- 51 , 52), 18.0 (CH₂CH₂SiMe₃), and -1.5 (SiMe₃).

Anal. Calc. for C₄₆H₅₄O₁₁Si: C, 68.13; H, 6.71. Found: C, 68.25; H, 6.80.

2-(Trimethylsilyl)ethyl O-(2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)-2,3-di-O-benzoyl-β-D-xylopyranoside (18).— A mixture of 17 (1.85 g), (Ph₃P)₃Rh(I)Cl (0.3 g) and 1,4-diazabicyclo[2.2.2.]octane (0.7 g) in 10:3:1 EtOH-PhMe-water (70 mL) was boiled for 9 h under reflux, concentrated to dryness, and the residue extracted with CHCl₃. The extract was washed successively with cold dil. HCl, aq. NaHCO₃, and water, dried, and concentrated. To a solution of the residue in 9:1 Me₂CO-water (20 mL) was added M HCl (0.1 mL). The mixture was boiled for 10 min under reflux, neutralized with solid NaHCO₃, filtered, and concentrated. Column chromatography (4:1 benzene-EtOAc) gave 18 (1.50 g, 85%), [α]_D²³ - 9.5° (c 0.9, CHCl₃); R_p 0.14 (t.l.c. in 15:1 benzene-EtOAc); ¹³C-n.m.r. (CDCl₃): δ 165.4 and 165.0 (C = O), 138.2 and 137.9 (aromatic C-1), 102.7 (C-1²), 100.4 (C-1¹), 67.0 (CH₂CH₂SiMe₃), 64.4 and 62.8 (C-5¹,5²), 18.0 (CH₂CH₂SiMe₃), and -1.5 (SiMe₄).

Anal. Calc. for C₄₃H₅₀O₁₁Si: C, 66.99; H, 6.54. Found: C, 67.13; H, 6.64.

2-(Trimethylsilyl) ethyl O-(4-O-allyl-2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)-O-(2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)-O-(2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)-2,3-di-O-benzyl-β-D-xylopyranoside (19). — A mixture of 16 (1.74 g, 2.3 mmol), 18 (1.37 g, 1.8 mmol), and powdered 4A molecular sieve (10 g) in PhMe (30 mL) was treated with methyl triflate (1.3 mL, 11.5 mmol), and processed as described for the preparation of 17. Column chromatography (20:1 benzene–EtOAc) gave 19 (2.18 g, 84%), m.p. 79–80° (from Et₂O-petroleum ether), $[\alpha]_D^{24} - 1^\circ (c 1.1, CHCl_3)$; R_F 0.37 (t.l.c. in 15:1 benzene–EtOAc); 13 C-n.m.r. (CDCl₃): δ 165.3, 165.0, and 164.9 (C=O), 138.5 and 138.2 (aromatic C-1), 134.5 and 116.95 (CH=CH₂), 103.6, 103.3, 100.3, and 99.9 (C-1¹,1²,1³,1⁴), 66.9 (CH₂CH₂SiMe₃), 63.5 and 62.8 (C-5¹,5²,5³,5⁴), 18.0 (CH₂CH₂SiMe₃), and -1.5 (SiMe₃).

Anal. Calc. for C₈₄H₉₀O₂₁Si: C, 68.93; H, 6.20. Found: C, 69.14; H, 6.28.

2-(Trimethylsilyl)ethyl O-(2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)-O-(2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)-O-(2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)-2,3-di-O-benzyl-β-D-xylopyranoside (20). — O-Deallylation of 19 (1.88 g), as described for 17, followed by column chromatography (8:1 benzene–EtOAc) afforded 20 (1.50 g, 82%), [α]_D²⁴ - 17° (c 1.1, CHCl₃); $R_{\rm F}$ 0.2 (t.l.c. in 10:1 benzene–EtOAc); ¹³C-n.m.r. (CDCl₃): δ 165.4, 165.0, and 164.9 (C = O), 138.5, 138.2, 137.8, and 137.6 (aromatic C-1), 103.3, 102.6, 100.3, and 100.0 (C-1¹,1²,1³,1⁴), 67.0 (CH₂CH₂SiMe₃), 64.3 and 62.8 (C-5¹,5²,5³,5⁴), 18.0 (CH₂CH₂SiMe₃), and -1.5 (SiMe₃).

Anal. Calc. for C₈₁H₈₆O₂₁Si: C, 68.34; H, 6.09. Found: C, 68.42; H, 6.20.

2-(Trimethylsilyl)ethyl O-(4-O-allyl-2,3-di-O-benzyl- β -D-xylopyranosyl)-(1 \rightarrow 4)-bis[O-(2,3-di-O-benzyl- β -D-xylopyranosyl)-(1 \rightarrow 4)]-2,3-di-O-benzyl- β -D-xylopyranoside (21). — The crude product obtained by treatment of a mixture of 16 (0.75 g, 994 μmol), 20 (1.09 g, 766 μmol), and powdered 4A molecular sieve (5 g) in PhMe (20 mL) with methyl triflate (0.56 mL,

4.9 mmol), as described for the preparation of 17, was chromatographed (15:1 benzene–EtOAc), to give 21 (1.34 g, 83%), m.p. 129–131° (from Et₂O–petroleum ether), $[\alpha]_0^{24}$ – 15° (c 1.2, CHCl₃); R_r 0.43 (t.l.c. in 10:1 benzene–EtOAc); ¹³C-n.m.r. (CDCl₃): δ 165.3, 165.0, and 164.9 (C–O), 138.5, 138.2, and 138.1 (aromatic C-1), 134.5 and 117.0 (C = CH₂), 103.6, 103.2 (2 C), 100.3, and 99.8 (2 C) (C-1¹,1²,1³,1⁴,1⁵,1⁶), 67.0 (CH₂CH₂SiMe₃), 63.5, 62.8, 62.7, and 62.6 (C-5¹,5²,5³,5⁴,5⁵,5⁶), 18.0 (CH₂CH₂SiMe₃), and –1.5 (SiMe₃).

Anal. Calc. for C₁₂₂H₁₂₆O₃₁Si: C, 69.24; H, 6.00. Found: C, 69.31; H, 6.08.

2-(Trimethylsilyl)ethyl O-(2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)-bis[O-(2,3-di-O-benzoyl-β-D-xylopyranosyl)-(1→4)-(2,3-di-O-benzyl-β-D-xylopyranosyl)-(1→4)]-2,3-di-O-benzoyl-β-D-xylopyranoside (22). — O-Deallylation of 21 (1.09 g) as described for 17, followed by chromatography (8:1 benzene–EtOAc), gave 22 (0.86 g, 80%), m.p. 119–120° (from MeOH–Me₂CO), [α]^{B4} – 23° (c 1.1, CHCl₃); R_F 0.56 (t.l.c. in 4:1 benzene–EtOAc); ¹³C-n.m.r. (CDCl₃): δ 165.3, 165.0, and 164.8 (C = O), 138.5, 138.2, 138.1, and 137.8 (aromatic C-1), 103.2 (2 C), 102.6, 100.3, and 99.9 (2 C) (C-1¹,1²,1³,1⁴,1⁵,1⁶), 67.0 (CH₂CH₂SiMe₃), 64.2, 62.7, and 62.6 (C-5¹,5²,5³,5⁴,5⁵,5⁶), 18.0 (CH₂CH₂SiMe₃), and – 1.5 (SiMe₃).

Anal. Calc. for C₁₁₉H₁₂₂O₃₁Si: C, 68.84; H, 5.92. Found: C, 68.90; H, 6.06.

REFERENCES

- 1 P. J. Garegg, B. Lindberg, and T. Norberg, Acta Chem. Scand., B, 33 (1979) 449-452.
- 2 G. Ekborg, T. Curenton, N. R. Krishna, and L. Rodén, J. Carbohydr. Chem., 9 (1990) 15-37 and references cited therein.
- 3 S. W. Hunter, I. Jardine, D. L. Yanagihara, and P. J. Brennan, Biochemistry, 24 (1985) 2798-2805.
- 4 K. Takeo, M. Nakagen, Y. Teramoto, and Y. Nitta, Carbohydr. Res., 201 (1990) 261-275.
- 5 J. J. Naleway, C. R. H. Raetz, and L. Anderson, Carbohydr. Res., 179 (1988) 199-209.
- 6 J. Gelas and D. Horton, *Heterocycles*, 16 (1981) 1587-1601 and references cited therein; J.-L. Debost, J. Gelas, D. Horton, and O. Mols, *Carbohydr. Res.*, 125 (1984) 329-355.
- 7 J. S. Brimacombe, Methods Carbohydr. Chem., 6 (1972) 376-378.
- 8 E. Petráková and P. Kováč, Carbohydr. Res., 101 (1982) 141-147.
- 9 M. L. Wolfrom and A. Thompson, Methods Carbohydr. Chem., 2 (1963) 211-215.
- J. Staněk, M. Sindlerova, and M. Černý, Collect. Czech. Chem. Commun., 30 (1965) 297–302.
- 11 S. Hanessian and J. Banoub, Methods Carbohydr. Chem., 8 (1980) 247-250.
- 12 H. Löhn, J. Carbohydr. Chem., 6 (1987) 301-306.
- 13 E. J. Corey and J. W. Suggs, J. Org. Chem., 38 (1973) 3224.
- 14 R. Gigg and C. D. Warren, J. Chem. Soc., C, (1965) 2205-2210.